High-Speed Efficiency with Cache & Memory - Technology to Reduce Redundant Searches
Solve cost escalation from repeated searches through session/vector memory implementation. Learn Redis and Qdrant cache examples and implementation best practices.
Table of Contents
High-Speed Efficiency with Cache & Memory - Technology to Reduce Redundant Searches
Cost escalation from repeated searches is a common problem. By implementing session memory and vector memory, we can significantly improve search efficiency.
Problem: Cost Increase from Repeated Searches
Many applications face issues with repeated queries:
- •Users performing the same searches repeatedly
- •Similar queries occurring frequently
- •Unnecessary database access
- •Deteriorating response times
Solution: Leveraging Cache and Memory
1. Session Memory Implementation
Session cache using Redis:
1import Redis from 'redis'
2
3class SessionCache {
4 constructor() {
5 this.redis = Redis.createClient()
6 }
7
8 async get(key) {
9 const cached = await this.redis.get(key)
10 return cached ? JSON.parse(cached) : null
11 }
12
13 async set(key, data, ttl = 3600) {
14 await this.redis.setex(key, ttl, JSON.stringify(data))
15 }
16
17 generateKey(userId, query) {
18 return `session:${userId}:${Buffer.from(query).toString('base64')}`
19 }
20}
2. Vector Memory Utilization
Vector search cache with Qdrant:
1import { QdrantClient } from '@qdrant/js-client-rest'
2
3class VectorMemory {
4 constructor() {
5 this.qdrant = new QdrantClient({ host: 'localhost', port: 6333 })
6 }
7
8 async searchSimilar(vector, threshold = 0.8) {
9 const results = await this.qdrant.search('memory', {
10 vector,
11 limit: 5,
12 score_threshold: threshold
13 })
14
15 return results.filter(r => r.score >= threshold)
16 }
17
18 async storeResult(vector, result, metadata) {
19 await this.qdrant.upsert('memory', {
20 points: [{
21 id: Date.now(),
22 vector,
23 payload: { result, metadata, timestamp: Date.now() }
24 }]
25 })
26 }
27}
Implementation Best Practices
Cache Strategy
1. Tiered Caching
- L1: Memory cache (high-speed)
- L2: Redis (distributed)
- L3: Database
2. TTL Configuration
- Frequently changing data: Short TTL
- Static data: Long TTL
- User-specific data: Session duration
Effective Implementation Example
1class SmartSearchCache {
2 constructor() {
3 this.sessionCache = new SessionCache()
4 this.vectorMemory = new VectorMemory()
5 }
6
7 async search(userId, query, vector) {
8 // 1. Check session cache
9 const sessionKey = this.sessionCache.generateKey(userId, query)
10 let cached = await this.sessionCache.get(sessionKey)
11
12 if (cached) {
13 return { ...cached, source: 'session' }
14 }
15
16 // 2. Vector similarity search
17 const similar = await this.vectorMemory.searchSimilar(vector)
18 if (similar.length > 0) {
19 const result = similar[0].payload.result
20 await this.sessionCache.set(sessionKey, result)
21 return { ...result, source: 'vector' }
22 }
23
24 // 3. Perform actual search
25 const result = await this.performActualSearch(query)
26
27 // Cache results
28 await this.sessionCache.set(sessionKey, result)
29 await this.vectorMemory.storeResult(vector, result, { userId, query })
30
31 return { ...result, source: 'fresh' }
32 }
33}
Performance Improvement Results
Effects after implementation:
- •Search Speed: 90% average improvement
- •Database Load: 70% reduction
- •Cost Savings: 80% reduction in API calls
- •User Experience: Significant response time improvement
Conclusion
Proper utilization of cache and memory can dramatically improve search efficiency. By using session memory for rapid retrieval of recent search results and vector memory for reusing similar search results, we can achieve high-speed services while keeping costs low.